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Abstract

Background: Skewness is an under-utilized statistical measure that captures the degree of asymmetry in the
distribution of any dataset. This study applied a new metric based on skewness to identify regulators or genes that
have outlier expression in large patient cohorts.

Results: We investigated whether specific patterns of skewed expression were related to the enrichment of
biological pathways or genomic properties like DNA methylation status. Our study used publicly available datasets
that were generated using both RNA-sequencing and microarray technology platforms. For comparison, the datasets
selected for this study also included different samples derived from control donors and cancer patients. When
comparing the shift in expression skewness between cancer and control datasets, we observed an enrichment of
pathways related to the immune function that reflects an increase towards positive skewness in the cancer relative to
control datasets. A significant correlation was also detected between expression skewness and the top 500 genes
corresponding to the most significant differential DNA methylation occurring in the promotor regions for four Cancer
Genome Atlas cancer cohorts.

Conclusions: Our results indicate that expression skewness can reveal new insights into transcription based on
outlier and asymmetrical behaviour in large patient cohorts.
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Background
Typically, the analysis of gene expression data focuses on
statistics that involve the mean and variance. The mean
indicates the most representative value in the dataset,
while the variance reflects how widely distributed the data
points are. These two statistics are often used in combi-
nation for more sophisticated analysis, e.g. the t-test or
linear regression. For most comparisons of transcriptomic
datasets, functions of the mean and variance are suffi-
cient for addressing a basic set of questions. Nevertheless,
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gene expression datasets are complex entities that repre-
sent an opportunity to move beyond simple hypotheses
and, instead, ask questions that reflect deeper insights into
the transcriptional regulation in cellular phenotypes.

The mean and variance are related to each other
through the method of moments, where these two statis-
tics represent the first and second estimators. Higher
moments beyond the second one, have rarely been con-
sidered in the analysis of gene expression data, although
some studies do exist [1–3]. This may be due in part to
the requirement that datasets have large sample sizes since
higher moments require more replicates to yield reliable
estimates. In the case of gene expression studies, a scarcity
of data has created a challenge for accurately estimating
skewness. Limitations in technology can also affect the
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reliability of the data, e.g. due to batch effects, the han-
dling throughput of samples, and lack of standardization
to correct for noise or technical artifacts.

Why might skewness be considered an informative
parameter to study for understanding gene expression?
When identifying transcriptional regulatory programs,
understanding trends in data that span the tail ends of the
distribution have helped to identify important regulators.
For example, expression quantitative trait loci (eQTL)
mapping has contributed to understanding genetic vari-
ation and regulation [4, 5]. Reliable detection of eQTLs
is based on a linear model and therefore predicated on
identifying genes that span large ranges in gene expres-
sion for individuals from different allele groups of a gene
[6–8]. Because skewness is a statistic that directly models
outliers, gene expression skewness, therefore, represents
a valuable way to understand the distribution structure of
a population of cells or patients. More specifically, skew-
ness is a property that reflects the asymmetry in size
and length of the two tails of a distribution. Given that
the tails of a probability density distribution reflect the
most extreme data points, it seems plausible that mea-
sures based on skewness would be useful for identifying
transcriptional regulators. For studies related to precision
medicine, skewness represents a potential avenue towards
identifying the genes that show the greatest variation in
the population.

As we begin to recognize the importance of non-Normal
distributions in genomics [9], it follows that skewness is
also emerging as a significant measure of interest. For
example, in RNA-sequencing datasets, transcript read
counts are assumed to follow a Negative Binomial or Pois-
son distribution [10, 11]. In single cell datasets a range of
different distributions are used for modelling gene expres-
sion; e.g., multi-modal, asymmetric, and highly skewed
distributions [12, 13]. In short, skewed distributions are
becoming more recognized for their utility for modelling
transcriptomes.

A limited number of studies have attempted to investi-
gate the utility of skewness in biology. In 2012, Casellas
and Verona [1] modeled the prevalence of skewness in
human transcriptomes. However, the study was limited
by several features of its design. Specifically, the sample
sizes of the datasets used were too small to obtain a sta-
ble estimate of skewness. Additionally, different microar-
ray platforms were used for each of the four datasets
included in their study, making it difficult to differentiate
the influence of technology-specific effects from genuine
patterns of expression skewness. The study also failed to
address how expression skewness differed for data col-
lected from RNA-sequencing. A very early study also
investigated skewness in single cells where gene expres-
sion profiles were modeled using a lognormal distribution.
However, the focus of this study was limited to identifying

departures from normality of the transformed data [13].
Another study also assessed the validity of the Normal
distribution for cancer gene expression datasets, demon-
strating how heavy-tailed distributions that included high
degrees of skewness and kurtosis were appropriate alter-
natives for modeling these datasets [2].

Our study breaks new ground by providing a thor-
ough investigation of skewness for a comprehensive set
of gene expression datasets that have been generated
by both microarrays and RNA-sequencing technologies
(Fig. 1). The results of this study identified an increase in
positive skewness for immune-related pathways in can-
cer versus control datasets. We also examined the rela-
tionship between expression skewness and differential
DNA methylation for four Cancer Genome Atlas (TCGA)
patient cohorts and identified genes that were significantly
correlated. The robustness of this relationship was most
evident for loci in the promotor regions. Collectively, the
results of this study indicate that regulatory insights can
be extracted by investigating gene expression skewness for
large patient cohorts.

Results
Measuring skewness of gene expression.
The skewness metric used in this study was calculated
by dividing the cube root of the third moment of a dis-
tribution by its standard deviation. Explicitly, the relative
skewness of a gene’s transcription expression (g) over a
population of size |X| is defined as

Sg(X) = 1
σg

3

√
1

|X| − 1
∑
x∈X

(gx − μg)3 (1)

This statistic was selected because of its ability to dif-
ferentiate between distributions containing wide, slightly
asymmetric shapes and those that were narrow and highly
asymmetric. Although this statistic is a biased sample esti-
mator of the population skewness, an unbiased statistic
can be constructed by multiplying the third moment by
the correction factor |X|/(|X| − 2) [14].

Asymptotically, as the population size increases, this
correction tends to 1 and bias of Sg(X) disappears. For
a dataset with X = 500 samples, this correction is of the
order of 0.2%, resulting in a negligible change to the skew-
ness calculation. It is worth highlighting that one of the
disadvantages of using the third moment on its own as an
estimate of skewness, is that it cannot readily distinguish
between two qualitatively different distributions (Addi-
tional file 1: Figure S1). Hence, for our study, the metric
Sg(X) was used to investigate skewness of gene expression.

Application of expression skewness to a diverse range of
studies representing six microarray and six RNA-seq datasets.
Both microarray and RNA-sequencing datasets were
included in this study to avoid any biases that may be
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Fig. 1 Outline of gene expression skewness analysis. This cartoon depicts the main steps involved in the analysis of gene expression skewness
conducted in this study

apparent with one technology but not the other. A total of
six microarray datasets were used, and these datasets rep-
resent five cancer patient cohorts and one control cohort.
An ovarian serous cystadenocarcinoma (OV) group (568
patients), a glioblastoma multiforme (GBM) cohort (548
patients), and a Luminal A (LumA) breast cancer sub-
group (284 patients) were taken from TCGA. The TCGA-
based datasets were profiled using Agilent 244K Custom
Gene Expression Microarray (G4502A-07-3).

An additional three microarray datasets were taken
from the NCBI Gene Expression Omnibus (GEO). We
used two cohorts with acute myeloid leukemia (AML),
one exclusively with individuals over the age of 60
(GSE6891) (461 patients) with samples collected from
both blood and bone marrow and the second (GSE15434)
of exclusively normal karyotype (NK) AML (251 patients)

with samples collected from mononuclear cells. These
two datasets were profiled using an Affymetrix Human
Genome U133 Plus 2.0 Array. The control for the microar-
ray group was a HapMap expression profiling (GSE6536)
collected via a Sentrix Human-6 Expression BeadChip.

A total of six RNA-seq datasets were included in
this study, five cancer cohorts and one control cohort.
The cancer cohorts included skin cutaneous melanoma
(SKCM) (470 patients), head and neck squamous cell car-
cinoma (HNSC) (519 patients), lower grade glioma (LGG)
(514 patients), lung squamous cell carcinoma (LUSC)
(495 patients), and kidney renal clear cell carcinoma
(KIRC) (531 patients). The RNA-seq control dataset was
sourced from 465 lymphoblastoid cell lines from the 1000
Genomes project created by the Geuvadis consortium
[15] (ArrayExpress accession id E-GEUV-1).
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Microarray and RNA-seq datasets have different proportions
of genes with positively-skewed and negatively-skewed
distributions.
The comparison of both microarray and RNA-seq
datasets allowed for an investigation into how skewness
was distributed in data from two different gene expression
technology platforms. The comparison between the two
selected platforms allowed for the opportunity to iden-
tify platform-specific changes in skewness across multiple
cancer-related datasets. The skewness metric reflects the
degree of asymmetry in a gene’s expression profile within
a patient cohort (Fig. 2a). Genes were divided into two
mutually exclusive groups based on whether their skew-
ness expression profile reflected positive or negative skew.
We defined gene splitting as the percentage of genes
that were allocated to these positive and negative skew
groups. The number of genes with negatively-skewed ver-
sus positively-skewed gene expression distributions varied
between the twelve gene expression datasets (Fig. 2b). On
average, the degree of gene splitting differed substantially
between the microarray and RNA-seq datasets (i.e. 0.253
in microarray datasets versus 0.511 in RNA-Seq datasets).
The results indicate that very few genes had zero skew in
any dataset, i.e. few genes have symmetric gene expression
distributions (Fig. 2c).

We tested the two sets of gene splits between the
RNA-seq and microarray datasets using Welch’s t-test
and found that there is adequate evidence to reject the

null hypothesis that the two sets are from the same dis-
tribution (P-value < 0.00015). The Shapiro-Wilkes tests
supported the normality assumption for both microar-
ray (P-value < 0.976) and RNA-Seq gene splits (P-value
< 0.480) which was necessary to apply the t-test. A pos-
sible explanation for why the microarray and RNA-seq
platforms generated gene splits that were different may
lie with the fact that microarrays are less able to detect
low transcript reads. Therefore, the left tails of expression
distributions are more likely to be attenuated in microar-
ray data and result in fewer negatively skewed genes.
This effect aligns with the observation that there is an
under-representation of negatively skewed genes in the
microarray datasets (Fig. 2b).

For TCGA datasets, known batch effects were adjusted
for in the microarray and RNA-seq datasets to pre-
vent any biases due to known batches. The method of
batch correction used for TCGA microarray data was
based on median and standard deviation correction, fol-
lowing Hsu et al. [16], and for TCGA RNA-seq data,
a linear model using limma [17]. Batch correction for
the remaining GEO datasets was not possible due to
information on potential batches being unavailable. How-
ever, with the batch correction applied to both types of
TCGA gene expression data, it is unlikely that batches
effects are contributing to the differences in skewness
gene splits observed between microarray and RNA-seq
datasets.

Fig. 2 Skewness in the gene expression study. a. Contrasting negative and positive skewed distributions. b. The proportions of genes with negative
and positive skewed expression reflect differences between microarray and RNA-Seq datasets. The dark grey bars indicate the fraction of genes with
a negatively-skewed expression distribution and the light grey bars indicate the remaining fraction of genes with positively-skewed expression
distribution. c. Distribution of gene expression skewness for the RNA-seq control dataset
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Sample size calculation demonstrate robustness of the gene
expression skewness results.
Reliable inferences come from ensuring that an adequate
sample size is used in the analysis. This is just as critical
for measuring skewness. We analysed the effect of sample
size on the fraction of genes with negative skewness as a
surrogate for the sensitivity of individual skewness results
to sample size (Additional file 2: Figure S2). The gene split-
ting statistic was computed on random subsamples of the
various datasets. The gene splitting is organized into a
sequence indexed by increasing sample size. Two metrics
were used to assess the convergence of each sequence, the
rate of convergence and the error to the limit. For an infi-
nite sequence sn with limit L, the rate of convergence (C)
is a number between zero and one defined as

C = lim
n→∞

L − sn+1
L − sn

(2)

While the nth error (E) is defined as

En = sn − L
L

(3)

Because only a finite section of the sampling sequence is
known, the limits cannot be computed directly. Therefore,
we assumed that the convergence can be approximated by
an exponential decrease of the form: sn = ae − −bn + L
with constants a, b, and L. The constants were estimated
using least-squares regression from the data. Once these
constants were determined, the limit of the sequence is
approximately L and the rate of convergence is given by
e − b.

The errors in the gene splitting limits are well within
acceptable ranges (0.025 to 1.136, based on absolute per-
cent error, see Additional file 4: Table S1, Additional file 2:
Figure S2). The rates of convergence that were close to
1 suggest that either the convergence is very slow for
these cases, which further supports our choice to include
only large datasets, or that the assumption of exponen-
tial convergence is not applicable and instead sub-linear
convergence (such as a power law) is more appropriate.
Nevertheless, the size of the error margins allows us to
accept results based on these datasets.

Contrasting gene expression skewness between two datasets
identified gene sets corresponding to three different types of
skewed relationships.
To investigate how changes in asymmetry of gene expres-
sion may identify new insights into phenotype, we com-
pared how skewness changed between two datasets by
examining the distribution of the difference in gene
expression skewness (Additional file 3: Figure S3A). For
each gene, its skew difference is simply the signed dif-
ference of its skewness in each of the two datasets being
compared. We adopted the convention that a positive
skew difference occurs when a gene has a greater skewness

in the first mentioned of the two datasets being com-
pared. The skew difference distributions are qualitatively
multi-modal and thus lend themselves to discrete catego-
rization (Additional file 3: Figure S3B). We used a variable
standard deviation Gaussian mixture model [18] to clus-
ter genes by skew difference. K = 3 mixture components
were chosen to maximize the Bayesian Information Cri-
terion (BIC) over the range 1 to 10 components and to
fit the qualitative observation of three independent modes
(Additional file 3: Figure S3C).

Pathway over-representation analysis identified
immune-related pathways had increased skewness in cancer
microarray datasets relative to control, whereas metabolic
pathways had decreased skewness.
Immune pathways consisted of up-skewed genes from
microarray cancer datasets compared with control.
Metabolic pathways had a lower or more negative skew
in cancer, with respect to control (Fig. 3a). However,
LumA is an outlier in the metabolic category showing
a small but non-negligible effect in the opposite direc-
tion. Immune pathways had almost no enrichment in
any skewness group when comparing cancers. This sug-
gests that if immune system pathways are truly more
highly skewed across cancer patients, this skew is not
consistent between different cancers. Nor is there a
solid relationship between the cancer type and the skew.
However, the cancer to cancer comparison does pro-
vide insight into the skew of the metabolic pathways.
Both AML groups showed lower skews than other can-
cers in metabolic pathways. Furthermore, normal kary-
otype AML has a higher skew in metabolic pathways than
standard AML.

Tissue-specific comparisons of RNA-Seq datasets also point
to an increased skewness in other cancers versus LGG for
immune-related pathways.
In addition to the cancer versus normal comparison,
the nature of the RNA-sequencing datasets allowed for
comparisons between cancers to identify tissue-specific
effects in gene expression skewness (Fig. 3b). Most strik-
ingly, LGG has consistently greater skew for immune
system pathways and lower skew for pathways related to
neural tissue than the other cancers used in this study.
It was also noted that pathways related to translation,
including protein synthesis and targeting to the endoplas-
mic reticulum, are consistently more positively skewed in
the cancer groups as compared to control. Translation has
the highest total score (39) across cancer to control com-
parison of any group considered. Furthermore, compar-
isons between cancers show that translational pathways
are almost entirely comprised of genes whose skewness is
consistent between cancers. These results suggest that the
skewness of translational genes in tumour transcriptomes
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A

B

Fig. 3 Pathway trends for skewness comparisons between datasets. a. Results are shown for microarray dataset comparisons. b. Results are shown
for RNA-seq dataset comparisons. The bars represent the number of category-specific pathways that appear in the ten most significant pathways of
the colour-specified group. “>” refers to genes where there was an increase towards more positive skew, “∼” refers to genes that had negligible
change in skew between the datasets, and “<” refers to genes where there was an increase towards more negative skew. For a. in the Immune
System and Metabolism plots, green refers to genes that have a greater skew in each cancer on the y-axis as compared to the control. In the AML
Metabolism plots, green refers to genes that have a higher skew in AML compared to each cancer on the y-axis. Large red scores in Metabolism
suggest that metabolic pathways have a lower skew in cancers compared to control. However, red scores in AML Metabolism suggest that
metabolic pathways in AML have a lower skew than those in other cancers. For b. In the Translation plots, green refers to genes that have a greater
skew in each cancer on the y-axis as compared to the control/other cancer on y-axis. In the LGG plots, green refers to genes that have a higher skew
in LGG compared to each cancer on the y-axis. b Overview of DNA methylation and gene expression skewness analysis. This cartoon outlines the
main steps for investigating the relationship between expression skewness and DNA methylation in four TCGA datasets
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is consistent between cancers and greater than that of
healthy tissue.

Investigating the relationship between skewness and mean
gene expression suggests that these two statistics are
generally independent.
The skew measure developed in this study was designed
to be shift-invariant and scale-invariant. The measure
therefore does not depend on the mean or standard devi-
ation. In principle, this means that there should not be a
bias or relationship between the skewness measure and
the expression of the gene, including the mean. Because
the skewness measure used in this study was designed
to be independent of differences due to shift and scale
of a gene’s expression distribution, we were able to iso-
late the effects due to skewness as estimated by this
measure directly. Plots showed the relationship between
skewness and mean gene expression for genes in the RNA-
seq datasets (Additional file 1: Figure S1) and microar-
ray datasets (Additional file 2: Figure S2). Overall, these
plots indicate that for much of the mean expression spec-
trum, there is minimal correlation with the skewness
measure. Some correlation exists for very lowly-expressed
genes (Additional file 1: Figure S1A, log2(expression) <

1). The relationship between genes that were differen-
tially expressed and skewed differently between datasets
is an area of investigation that may further identify
the regulatory information captured by the skewness
metric.

Correlation between differential DNA methylation and
expression skewness involved first identifying the patients
lying in the tails of the gene expression distribution.
Four DNA methylation datasets from TCGA patient
cohorts whose expression data were previously analysed
in this study were used to investigate the effect of epi-
genetic regulation on gene expression skewness (Fig. 3).
These data correspond to patients from the SCKM, LGG,
LUSC, and KIRC patient cohorts. Methylation data for
other groups notably HNSC were unavailable. Our anal-
ysis hinges on comparisons between patients falling in
the tail of a specific gene expression distribution ver-
sus those patients in the remainder of the distribution.
Because the tail of a distribution is not a precisely defined
concept, we examined two alternative methods of deter-
mining the tail and non-tail regions of a distribution and
demonstrate that, with an appropriate choice of param-
eters, these methods produce similar results (Additional
file 3: Figure S5).

First, we examined a method (referred to as quantile
splitting) that takes the most extreme samples in the direc-
tion to which the distribution is skewed and employs a
specific quantile cut-off to ensure that tail area is constant
across all distributions ensuring that our statistical tests

are run over equal sized samples. Second, we considered a
Gaussian splitting method in which the central mode is fit
by a Gaussian density function using the R package mclust
[18]. Points that deviate significantly from the fit density
in the direction of the distribution skew make up the tail.
Simulations demonstrated that the features of tails iden-
tified by these two methods are qualitatively very similar
(Additional file 3: Figure S6). When the two methods were
run on real data, the two methods produced an overlap
of 88% significant genes. Based on these tests, we opted
to use the quantile splitting approach since it had almost
identical results with the Gaussian splitting method but
avoided some pathological situations that were potentially
possible.

Comparing the most extreme differential DNA methylation
patterns in the tail of the gene expression distributions
highlighted for changes in gene expression skewness for four
TCGA datasets.
With identified tail and non-tail regions of each gene
expression distribution, we used a Wilcoxon signed rank
test on the M-values for each probe annotated to that spe-
cific gene of patients who fall into the tail and non-tail
groups to test the hypothesis that the DNA methylation
status of all patients are drawn from the same popu-
lation. After correction for multiple testing using the
Benjamini-Hochberg procedure [19], genes were ranked
by the P-value of their most significant probe and the per-
centage of methylation probes annotated to them which
were significant (P-value < 0.01).

In order to look for relationships between differential
methylation in the tail and non-tail expression regions and
the skewness of the expression distribution, we generated
plots showing the 500 most significant genes (with respect
to their differential DNA methylation) plotted by their
skewness vs difference in M-value between the tail and
non-trail regions (Fig. 4). Plots are distinguished based on
the functional region of included probes. We separated
the data into quadrants based on positive/negative skew
and increase/decrease in methylation. These quadrants
follow the qualitative clustering of the data. We used
Fisher’s exact test to test differences in number of data
points that fall within each quadrant between the cate-
gories of probe functional regions.

For each of the four TCGA datasets, we identified genes
that had a statistically significant correlation between
expression skew and differential DNA methylation (P-
value < 0.01). For the KIRC cohort, there were 2023
significant genes, 7782 genes in the LUSC cohort (Addi-
tional file 3: Figure S7), 8500 genes in the SKCM cohort
(Additional file 3: Figure S8), and 9053 genes in the LGG
cohort (Additional file 3: Figure S9). It is important to
highlight that this correlation between gene expression
skewness and DNA methylation focused only on the genes
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Fig. 4 Overview of DNA methylation and gene expression skewness analysis. This cartoon outlines the main steps for investigating the relationship
between expression skewness and DNA methylation in four TCGA datasets

that mapped to the top 500 most significant differen-
tially methylated and cannot be extrapolated to general
correlations across the genome or methylome.

Assessing the robustness of the correlation between
differential DNA methylation and gene expression skewness
identified the relationship for the promoter regions as being
the most robust.
We also tested the robustness of these results when the
number of significant genes included in the correlation
test was altered (Fig. 5). The Pearson correlation coeffi-
cient between differential methylation and skewness and
its associated 95% confidence interval is calculated for
each plot. We assessed the dependence of our correlation
results on the arbitrary choice of selecting the 500 most
significant genes by graphing the correlation coefficients
for probes based on function as we increased the number
of significant genes included to highlight the most robust
features of the correlation results. Plots show the fitted
smoothing spline of the data (using the R smooth.spline
function).

When fewer significant genes were included, it was clear
that for all probe locations (gene body, promoter, UTR),
the degree of correlation moved towards more extreme
negative values. However, for the promoter regions in
both KIRC (Fig. 5a) and SKCM (Fig. 5b), the corre-
lation profile remains almost invariant for the range
of significant genes sampled (100 to 500 genes). The
most significant and highly negatively correlated methy-
lation sites in non-promoter regions are washed out
by genes that fall on the increasing diagonal (Fig. 5,
see blue and purple regions). The rapid loss of cor-
relation in non-promoter regions as more genes are
included is especially apparent in the SKCM cohort
(Fig. 5b).

Genes with significant correlation between expression
skewness and differential DNA methylation were enriched for
cancer-related and immune-related pathways.
Using MSigDB and Gene Ontology (GO) terms, we inves-
tigated whether the sets of genes with a significant corre-
lation between expression skewness and differential DNA
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Fig. 5 The relationship between expression skewness and differential Methylation in KIRC. The gene expression skewness for the 500 most significant
genes identified from the KIRC cohort are plotted against the average change in DNA methylation of their significant annotated methylation sites
classified by functional region for a. all probes, b. promoter, c. UTR, d. gene body. The data are split into quadrants representing positive/negative
skewness and increase/decrease in methylation. Red points = upper left quadrant, blue = upper right, purple = lower left, green = bottom right

methylation datasets were enriched for specific pathways.
We took the intersection of the most significant genes
across the 4 methylation datasets and the top 1269 sig-
nificant genes from each dataset that did not fall into
the intersection. 1269 was chosen, as the KIRC dataset
had the fewest unique significant genes and we wanted
equal numbers of genes to test for side-by-side com-
parison. These sets of genes were used to query the
C4 (computational genes) and C6 (oncogenic signatures)
datasets from MSigDB [20]. Additionally, these sets of
genes were also used to query several GO pathway analysis
tools (Gorilla [21], PantherDB [22]). Due to the chal-
lenges of finding significant patterns from the results
of these queries, we adopted three methods of analy-
sis: looking for variation from the baseline set of genes,
looking for variations between cancers, and investigat-
ing uniquely significant genes defined as significant genes
that appear in one cancer cohort but do not appear in
the overlap.

These trends seem to be comprised of two major
trends; first, enrichment in immune response, shown
by the leukocyte activation GO terms and the signif-
icant overlap with the gene set MODULE_84, com-
prised of genes related to immune response (Additional
file 3: Figure S9). Second, enrichment in cancer hall-
marks [23], shown by the GO terms related to
angiogenesis and signal transduction [24] as well as
significant overlap with the cancer genes in MOD-
ULE_55 (see Additional file 5: Tables S2, Additional file 6:
Table S3).

Discussion
When looking at samples of data extracted for a popu-
lation, the goal of statistics is to learn about the distri-
bution of samples by approximation. Mathematically, we
can only ever approach a distribution through models,
and each moment of a distribution adds a new dimen-
sion to that model. The first moment, the mean, tells us
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about the middle of a distribution. The second moment,
the variance, tells us about the normal part of a distri-
bution. The third moment, skewness, tells us about the
outliers of a distribution. These outliers have the poten-
tial to teach researchers quite a bit about cancer, especially
in regard to cancer hallmarks, and also in learning why
patients in a study have exceptionally positive or nega-
tive outcomes. In this way, skewness can provide a new
angle that is distinct from insights learned from differ-
ential expression. For example, the gene ARHGAP30,
which codes for Rho GTPase-activating protein 30, is
a pivotal regulator for p53 acetylation and functional
activation in colorectal cancer [13, 25]. Our analysis
shows that ARHGAP30 exhibits notable differential skew
between cancer and control cohorts (Additional file 3:
Figure S10).

Variation in genetics and cancer biology has been the
driving component in discoveries of how the genome and
transcriptome function. Our results suggest that skew-
ness has the potential to bring us closer to more authentic
comparisons about the tails of distributions that cannot
be covered by lower statistical moments, which are typ-
ically the status quo tools for analysis in computational
biology. Significantly, we have seen enrichment in genes
and GO terms that are sensible reflections of the specific
datasets from which they come (e.g., neuro tumour clin-
ical annotations in LGG, Additional file 3: Figure S10).
This demonstrates that our method uncovers real biolog-
ical effects and epigenetic features from matched DNA
methylation analysis.

A recurring theme in our research has been that both
immune and metabolic processes make up a large portion
of the top set of significant results, as it relates to features
of genes identified through either their significance due to
skewness or due to epigenetic regulation. We explored this
recurrence in two directions: first, there is a growing body
of research into the importance of reprogramming cellu-
lar metabolism to the genesis and proliferation of tumour
cells [26–28]. Furthermore, cellular metabolic pathways
signal regulatory enzymes and nearby cells which aids in
the oncogenic reprogramming of metabolism and shift in
expression profiles of metabolic related genes [29]. There
is also precedent for differential expression of immune
related genes in tumours, an effect caused by the cancer
immune response. This effect most notably explains the
prevalence of terms such as lymphocyte activation in our
results [30].

However, mixtures of cell types present in the sam-
ples used to produce expression data may lead to
immune or metabolic genes being enriched in results.
This occurs not because of patterns in the data, but
because of the nature of skewness analysis. We pre-
dict that this effect would be strongest in pathways
related to the immune system because the specializa-

tion of immune cells and differences between patients
of present cell types may increase the size and direc-
tionality of expression tails for immune-related genes.
These tails reflect variability among cell types rather than
among patients. This effect should be investigated for-
mally by studying datasets in which the proportions of
different immune cells have been captured and evaluating
whether differences in skewness track with those different
proportions.

An especially informative study might look at a popu-
lation of cells with homogeneous cellular function, per-
haps immune specific cells such as leukocytes, whose
sequencing data is available from the social genetics of
loneliness study from UCLA [31]. We hypothesise that
immune system-related pathways would show lower sig-
nificance to skewness analysis in a more homogeneous
cell population if cell specialization is, in fact, the driver
of our results. This raises the utility of applying skew-
ness to single cell populations as an informative way to
understanding transcriptional regulation. Limitations of
lower moments have been observed in single cell gene
expression modelling where average expression is carry-
ing only limited information. There is movement towards
modelling either changes in distribution shape or simply
recognizing that genes do not have similar distributions
across the cell population [12]. We present skewness anal-
ysis as a candidate method for researchers aiming to inves-
tigate the gene expression distribution shape in single cell
applications.

Our results regarding the distribution of skewness
across the genome highlight a striking difference between
microarray and RNA-seq analysis that is non-obvious to
other statistics. The much lower sensitivity of microar-
ray technologies to low-transcript signals manifests itself
as an attenuation of leftward tails in gene expression
distributions. This attenuation vastly reduces the num-
ber of genes that are identified by microarray analysis
as having negative skewness across their gene expression
population. We determined that this inadequate spec-
trum makes skewness analysis applied to data collected via
microarrays unreliable due to the necessity of sensitivity
at broad range of expression values in both the high and
low transcript regimes.

We further concluded that large sample size is criti-
cal to draw accurate and robust conclusions from skew-
ness analysis. The clear trend of uniform divergence of
skewness results from the limiting case as fewer sam-
ples are included in the calculations highlights. Care must
be taken to ensure results dependent on higher moment
calculations are not sample size-dependent, as can be
tested by random down-sampling. Based on our own
down-sampling calculations, we recommend that skew-
ness results be applied to datasets of at least 200 samples
to ensure the robustness of any conclusions. Future exper-
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imental design of skewness analysis must consider both
the need for large datasets and also the necessity of a
measuring platform that allows for capture of a broad
spectrum of expression reliably.

Our analysis of the link between DNA methylation
and skewness has led to interesting and somewhat unex-
pected results. These results have implications both for
the biological interpretation of skewness and for the study
of mechanisms behind the regulatory effects of DNA
methylation. Primarily, our conclusion suggests promoter
methylation, known to be an epigenetic downregulation
of gene expression, is a driver of skewness. Skewness
is negatively correlated with tails exhibiting increased
methylation of promoter regions. The fact that the pro-
moter probes have the most extreme correlation between
methylation and skewness, persisting even with sampling
of larger significant genes, suggests that there is a mech-
anistic or regulatory event that skewness is identifying
by integrating these two data types. This correlation was
strong ( 0.8) across all cancer cohorts studied and robust
to the number of included genes. The consistency in
the negative direction of correlation for all three func-
tional groups of methylation probes also supports the idea
that skewness is linked to, or is impacted by, epigenetic
signatures.

Furthermore, the number of genes identified as hav-
ing significant differential methylation between their tail
and non-tail regions (at least 2000 in every cohort at
the P-value < 0.01 level) further supports the idea
that skewness is epigenetically driven. We hypothesize
that deviations between the methylation of loci between
patient sub-groups creates tail regions. The relative sizes
of these sub-groups determine the asymmetry and there-
fore the skewness of the gene expression distribution. It
remains unknown whether skewness has genetic drivers
as well as epigenetic ones. We propose further study
into the difference in genetic mutations, specifically single
nucleotide polymorphisms, exhibited by patients in the
tail for gene expression.

Surprisingly, we found that highly significant methyla-
tion probes, regardless of regulatory function, showed a
strong negative correlation between differential methy-
lation and skewness. This suggests a more direct effect
between changes in gene expression being influenced
by DNA methylation at functional locations in or near
genes. The current understanding of methylation holds
that methylation loci in the gene body have an upregu-
latory effect with increased methylation counter to these
results. This may be indicative of unknown mechanisms
that allow DNA methylation in non-promoter regions to
downregulate gene expression. We suggest that skewness
analysis offer a new method for studying methylation that
highlights certain highly specific effects, such as the over-
all negative correlation between differential methylation

and distribution asymmetry. However, while these results
are interesting, the promoter results are in line with how
we understand the effects of DNA methylation at that
region of the genome and their corresponding effect on
gene expression.

The observation that negative correlations were exhib-
ited between DNA methylation in the gene body and
UTRs and the expression of significant skewed genes
was more surprising. However, negative correlations have
been reported in some instances. This may suggest a sub-
set of gene-loci have a specialized or less generic function.
And the consistency of this specific trend across the four
different cancer types that were investigated suggests that
it may be a shared feature of cancer more generally. The
proposed specialization of these gene-loci provides justi-
fication for our study of common features between these
genes.

The influence of tumor purity on the gene expres-
sion skewness distribution may be interesting to investi-
gate further, especially in relation to the pathway over-
representation analysis. In a previous study, we have
addressed how tumor purity is associated with the shape
of gene expression distribution using TCGA datasets [38].
de Torrente et al. investigated the extent to which tumor
purity was correlated with gene expression for GBM and
OVC TCGA cohorts from both microarray and RNA-seq
datasets. For GBM (microarray), OVC (microarray), and
OVC (RNA-seq), a very small number of genes had sig-
nificant correlation with tumor purity (377 to 441 genes,
adjusted P-value < 0.01) and for GBM (RNA-seq), there
were zero significant correlations. Both GBM and OVC
microarray datasets were included in the skewness study.
De Torrente et al. [38] suggests that tumor purity is
unlikely to have an effect on gene expression skewness.
However, a further exploration is challenging at this cur-
rent stage because not all datasets used in the skewness
study have tumor purity data available.

Conclusions
In this article, we have demonstrated the efficacy of skew-
ness as an indicator of biological hetrogeneity in gene
pathways causally related to specific cancer cohorts. Fur-
thermore, we have presented evidence for a link between
outlying gene expression (which formes the skewed tails)
and differential promoter region methylation as compared
to their cohort baseline. This suggests that skewness may
provide more than a gross statistic for use in compar-
ing two datasets but possibly a metric with direct bio-
logical implications. However, we stress that our results
indicate a strong correlation between those patients who
exhibit gene expression in the extremities of the distribu-
tion (the tail region) and those whose corresponding gene
exhibits exceptional promoter methylation only in the
most extremely skewed genes. Overall, we do not claim,
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nor does the evidence suggest, a strict causal relation-
ship between differential methylation and gene skewness.
That said, these results suggest that skewness may provide
valuable insight in the analysis of large patient cohorts
beyond those analysis based on changes in gene distri-
bution means and variances alone. We hope that future
studies will investiage the specific role that methylation
plays in driving the skewness apparent in gene expres-
sion distributions and their differences between cohorts.
Furthermore, we suggest that future research on large
patient cohorts will consider skewness and possible higher
moments to glean further information from their aggre-
gate data and to further investigate the conclusion that
gene expression skewness reflects biological realities of
the cohort.

Materials and Methods
Availability of R Code. https://github.com/humford/
epsilon. R version 3.2.3 was used for all analysis.

Microarray datasets. Samples were collected from pri-
mary solid tumour and recurrent solid tumour, and are
log2-transformed and Lowess normalized. These data can
be accessed from the TCGA Level 3 database or the
legacy portal hosted by GCD. All three datasets were
collected at University of North Carolina at Chapel Hill
(UNC) using an Agilent 244K Custom Gene Expression
Microarray (G4502A-07-3). The HapMap expression data
were log2 transformed and normalized using quantile
normalization [32].

RNA-Seq datasets. The five cancer cohorts were taken
from TCGA level 3 data. All five datasets contain sam-
ples from primary solid tumour and recurrent solid
tumour collected at UNC using Illumina HiSeq 2000 RNA
Sequencing Version 2 Analysis, were log2-transformed
and reported as fragments per kilobase of transcript
per million (FPKM) mapped reads via RSEM [33]. The
RNA-seq control dataset was downloaded from the 1000
Genomes project created by the Geuvadis consortium
(ArrayExpress accession id E-GEUV-1). These data were
collected using an Illumina HiSeq 2000, processed with
GEM mapper 1.349, and log2-transformed. We trans-
formed all RNA-seq datasets from FPKM count normal-
ization to transcripts per kilobase of transcript per million
(TPM) for our analysis.

DNA methylation datasets. All DNA methylation
datasets were generated using an Illumina Human Methy-
lation 450k BeadChip array. Summary intensities were
extracted by the methylumi R package (v. 2.10.0 run in
R v. 3.1.0). In our analysis, we transformed beta-values
to M-values with a logit transformation due to advan-
tages in statistical robustness of M-values over beta-values
given the nature of our analysis [34]. The UCSC Genome
Database provides annotation for Illumina 450k methy-
lation probes including the functional region of the gene

in which each methylation site is located [35]. We sepa-
rated probes into three categories based on their methy-
lation site functional region as determined by the UCSC
annotations: Promoter, defined as the region 1500bp
upstream of the transcriptional start site (annotated as
TSS1500 including TSS200 in UCSC database); Untrans-
lated regions (UTRs), located at both the 3’ and 5’ ends of
the gene; and Body, made up of all other annotated regions
(body and first exon).

Mixture modelling. A variable standard deviation Gaus-
sian mixture model from the R/Bioconductor package
mclust (version 5.0.2 run on R version 3.1.2) was used to
cluster genes by skew difference. K = 3 mixture compo-
nents were chosen to maximize the Bayesian Information
Criterion (BIC) over the range 1 to 10 components and
to fit the qualitative observation of three independent
modes.

Pathway over-representation analysis. Gene enrichment
was performed on the gene lists produced by the mix-
ture model using a hypergeometric test run on each of the
three gene categories produced by the mixture model cor-
responding to negative skew difference, negligible skew
difference, and positive skew difference respectively. We
used tools from the Bioconductor package GOstats (ver-
sion 1.7.4, run on R version 3.1.2) [36] and the Biocon-
ductor package KEGG.db (version 2.1 run on R version
3.1.2) [37]. P-values were adjusted for multiple testing
using the Benjamini-Hochberg procedure within each
mixture component, dataset and pathway module (Cellu-
lar Component, Molecular Function, Biological Process,
and KEGG Pathway). Significant results were constrained
at the 0.05 level after adjustment for multiple testing cor-
rection. Results are organized into four supporting files
(Additional file 4, 5, 6, and 7: Table S1-S4) with compar-
ison of cancers to control in microarray and RNA-seq
respectively and comparisons between individual can-
cers again divided between the microarray and RNA-seq
datasets.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3252-0.

Additional file 1: Supplemental Figure S1. Investigating the
Skewness-Mean Gene Expression Relationship for RNA-seq Datasets. Plots
of the skewness measure versus the mean gene expression for the A.
control, B. TCGA HNSC, C. TCGA LGG, D. TCGA LUSC.

Additional file 2: Supplemental Figure S2. Investigating the
Skewness-Mean Gene Expression Relationship for Microarray Datasets.
Plots of the skewness measure versus the mean gene expression for the A.
AML, B. AML (NK), C. control, D. TCGA GBM, E. TCGA Breast Cancer
(Luminal A), F. TCGA OV.

Additional file 3: Figure S3-S6. Correlation Results Between Skewness and
Methylation in each Methylation Dataset. (Above) The skewness of the 500
Most significant genes plotted against the average change in methylation
of their significant annotated methylation sites classified by functional

https://github.com/humford/epsilon
https://github.com/humford/epsilon
https://doi.org/10.1186/s12859-019-3252-0
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region. The data are split into quadrants representing positive/negative
skewness and increase/decrease in methylation. (Red points = upper left
quadrant, blue = upper right, purple = lower left, green = bottom right)

Additional file 4: Supplemental File Table S1. Microarray Cancer to
Control Gene Enrichment Results. The ten most significant GOStats
pathways for each subcategory comparing the microarray cancer cohorts
to control. Results are separated by GOStat term function (Biological
Process: BP, Cellular Component: CC, Molecular Function: MF, and KEGG),
comparison group (“UP”, “DOWN”, “MIDDLE”), and by cancer cohort.
https://drive.google.com/open?id=0B57SQtVF1CxkMkwzRHZpcTcwWWM

Additional file 5: Supplemental File Table S2. Microarray Cancer to Cancer
Gene Enrichment Results. The ten most significant GOStats pathways for
each subcategory comparing between microarray cancer cohorts. Results
are separated by GOStat term function (Biological Process: BP, Cellular
Component: CC, Molecular Function: MF, and KEGG), comparison group
(“UP”, “DOWN”, “MIDDLE”), and by the two cancer cohort being compared.
UP refers to larger skew in the first cohort indicated. https://drive.google.
com/open?id=0B57SQtVF1CxkemhMLWdBeFVZWVE

Additional file 6: Supplemental File Table S3. RNA-Seq Cancer to Control
Gene Enrichment Results. The ten most significant GOStats pathways for
each subcategory comparing the RNA-Seq cancer cohorts to control.
Results are separated by GOStat term function (Biological Process: BP,
Cellular Component: CC, Molecular Function: MF, and KEGG), comparison
group (“UP”, “DOWN”, “MIDDLE”), by cancer cohort. https://drive.google.
com/open?id=0B57SQtVF1CxkUFBVQkxDcXJGWDg

Additional file 7: Supplemental File Tables S4. RNA-Seq Cancer to Cancer
Gene Enrichment Results. The ten most significant GOStats pathways for
each subcategory comparing between RNA-Seq cancer cohorts. Results
are separated by GOStat term function (Biological Process: BP, Cellular
Component: CC, Molecular Function: MF, and KEGG), comparison group
(“UP”, “DOWN”, “MIDDLE”), and by the two cancer cohort being compared.
UP refers to larger skew in the first cohort indicated. https://drive.google.
com/open?id=0B57SQtVF1Cxkd0VCUURhZnVoX00

Additional file 8: Supplemental File Table S5-S8. GOStats Terms in Each
Category for Classification of Differential Skew. Specific GOStats terms and
pathways included in each category used to summarize gene enrichment
data. https://drive.google.com/open?id=
0B57SQtVF1CxkUnRDU3A4Tm1DUkU https://drive.google.com/open?id=
0B57SQtVF1CxkZlgwdmQwSWpUOTQ https://drive.google.com/open?id=
0B57SQtVF1CxkRzlnN2s5Y1pPNjg https://drive.google.com/open?id=
0B57SQtVF1CxkVEdiYktBbkc4YWc
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